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Editorial
Sleep under evolutionarily relevant conditions
Studies of sleep in animals and humans have generally been
done under controlled conditions, with fixed thermoneutral tem-
perature, 12-12 lighting, “ad libitum” food availability and in the
absence of threat or stress. Such studies were well justified as an
initial approach to studying the phylogeny of sleep, utilizing labo-
ratory polygraphs or in the case of zoos, visual observation. Howev-
er, although such studies allowed comparison of sleep across
species in similar, though unnatural conditions, they are unable
to fully explore the adaptive function of sleep under the dynamic
real world conditions that have shaped evolution.

Rapid advances in electronics have now enabled more natural-
istic studies of the functions and species differences in sleep. Rat-
tenborg has been a pioneer in the application of this approach.
This includes the small devices pictured in the current illustrations
[1e3].

Of great interest is the sleep in birds under naturalistic condi-
tions that have been shown by Rattenborg, including asymmetry
between the two cortical hemispheres, correlated with eye state.
He has also explored changes in sleep duration during migration,
as is illustrated here, and during mating behavior [4,5].

We have recently used Actiwatch monitoring of the timing of
sleep in wild African elephants [6]. We found that, in the wild, el-
ephants have half the average sleep duration seen in captivity and
we were able to describe the variability and timing of their sleep
in relation to natural light and temperature for the first time. Such
studies challenge the simplistic idea that sleep duration is fixed
and that sleep in the wild is greater in duration than sleep under
laboratory conditions. Indeed although animals in the wild are
usually healthier that those confined to laboratories and zoos, an-
imals in the wild often have less sleep that those in zoos. Sloths in
the lab average 15 h/day of sleep, but they sleep 9 h/day in the
wild [7]. Frigate birds in cages sleep 9.3 h, but when flying over
the ocean for 10 day periods they sleep 0.7 h/day [3], without
rebound. Fur seals have 80 min of REM sleep/day on land, but in
water, where they spend >70% of their life, they average 3 min
of REM a day. They have no REM “rebound” when they return to
land [8]. A recent study in the oryx, studied under the extreme
seasonal temperature variations in which they evolved showed
major changes in sleep duration and timing as a function of season
[9].

The study of sleep in animals with asymmetric electroenceph-
alogram (EEG), allows the neurochemical substrates of EEG asym-
metry to be determined. In our studies of unihemispheric sleep in
the fur seal we showed the participation of acetylcholine, rather
than norepinephrine and serotonin in the marked EEG asymmetry
seen in fur seals having unihemispheric sleep [10e12]. Our recent
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study using digital recording devices showed that unihemispheric
high voltage EEG expression is linked to a nearly complete loss of
REM sleep when fur seals are in the water, where they spend 10
months a year, with no rebound when returning to land [8].

The use of digital devices that record activity, travel direction
and that allow unrestrained long-term monitoring of sleep in ani-
mals and humans, along with “big data” approach of large popula-
tions (for example, hundreds of thousands of humans wearing
Fitbits) under natural conditions are producing great advances in
our understanding of sleep. The development of these techniques
opens to door to seeing sleep's evolutionary function in ways that
contrast with sleep measurement and deprivation in animals
placed in conditions differing greatly from those which drove evo-
lution. In the case of humans we recently reported consistently
lower sleep durations in hunter-gatherers than in industrial popu-
lations [13]. Inevitable advances in sleep monitoring and in data
processing will make this approach increasingly important in un-
derstanding sleep and its pathologies.
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