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GABA release in the dorsal raphe nucleus: 
role in the control of REM sleep 

DOUGLAS NITZl AND JEROME SIEGEL2 
Departments of lNeuroscience and 2Psychiatry, University of California, 
Los Angeles 90024; and lp2Veteran’s Affairs Medical Center, Sepulveda, California 91343 

Nitz, Douglas, and Jerome Siegel. GABA release in the 
dorsal raphe nucleus: role in the control of REM sleep. Am. J. 
Physiol. 273 (Regulatory Integrative Comp. Physiol. 42): 
R451-R455, 1997.-The cessation of firing of serotonergic 
dorsal raphe neurons is a key controlling event of rapid eye 
movement (REM) sleep. We tested the hypothesis that this 
cessation of activity is due to y-aminobutyric acid (GABA) 
release using the in vivo microdialysis technique. We found 
that REM sleep is accompanied by a selective increase in 
GABA release, but not by a change in glutamate or glycine 
release in the dorsal raphe nucleus. Microinjection of the 
GABA agonist muscimol into the dorsal raphe increased REM 
sleep, although microperfusion of the GABA antagonist picro- 
toxin blocked REM sleep. These results implicate GABA 
release as a critical element in the production of the REM 
sleep state and in the control of discharge in serotonergic 
neurons across the sleep/wake cycle. 

microdialysis; muscimol; picrotoxin; serotonin 

THE SEROTONERGIC NEURONS of the brain stem dorsal 
raphe (DR) nucleus innervate multiple neocortical, 
hippocampal, diencephalic, and brain stem regions of 
the mammalian brain (3, 33, 37, 43). The activity of 
serotonergic neurons has been implicated in the control 
of shifts between states of sleep, nociception, cortical 
desynchronization, and normal and abnormal emo- 
tional states (38, 42). The greatest change in the 
discharge rate of DR cells occurs across the sleep/wake 
cycle. In the freely behaving cat, serotonergic neurons 
fire tonically at a rate of 3-6 Hz throughout waking and 
at l-2 Hz during slow-wave sleep (SWS). During rapid 
eye movement (REM) sleep, serotonergic neurons ex- 
hibit a near-complete cessation of activity (23,25). 

The decreased activity of serotonergic neurons dur- 
ing REM sleep is accompanied by a decrease in seroto- 
nin release in several brain areas implicated in the 
production of sleep including the hypothalamus and 
pontine reticular formation (PRF) (15, 28, 44). Evi- 
dence from several laboratories suggests that the inac- 
tivity of DR serotonergic neurons disinhibits neuronal 
mechanisms responsible for the production of REM 
sleep. Thus blockade of DR neuronal activity by local 
cooling has been shown to induce REM sleep (6), and 
electrical stimulation of the DR blocks REM sleep (5). 
An increase in REM sleep time occurs with continuous 
perfusion of the DR with %hydroxy-2(di-n-propylamino)- 

tetralin, a compound that inhibits the activity of DR 
serotonergic cells by activation of 5hydroxytryptamine 
la (5-HT1,) autoreceptors (29). The cessation of activity 
of serotonergic neurons is required for the generation of 
ponto-geniculo-occipital (PGO) spikes, a key phasic 
event of REM sleep (6, 18, 36). Recent evidence sug- 
gests that serotonin modulates the production of PGO 
spikes through actions in the amygdala (32) as well as 
through inhibition of brain stem cholinergic neurons, 
which are known to fire in conjunction with PGO waves 
(20,22,39). 

The neurochemical mechanism underlying the cessa- 
tion of DR serotonergic unit activity during REM sleep 
is unknown. It is unlikely that serotonergic inhibition 
of DR serotonergic cells through an autoreceptor mech- 
anism is responsible, because the concentration of 
serotonin in the DR is lowest during REM sleep (28). In 
addition, data suggest that autoinhibitory mechanisms 
of serotonergic DR cells are significantly activated only 
during waking behaviors (8). Disfacilitation by removal 
of an excitatory noradrenergic or glutamatergic input 
could contribute to reduced discharge of DR units 
during sleep. However, serotonergic DR neurons ex- 
hibit pacemaker potentials in the anesthetized rat (1) 
and are unresponsive to excitatory input during REM 
sleep (23). Therefore, we hypothesized that the cessa- 
tion of activity in serotonergic DR neurons during REM 
sleep is mediated by active inhibition. 

Both y-aminobutyric acid (GABA) and glycine po- 
tently inhibit serotonergic DR neurons (10, 11, 26). 
GABAergic and glycinergic neurons densely innervate 
the serotonergic neurons of the DR (9,12). A glycinergic 
mechanism mediates the characteristic muscle atonia 
of REM sleep through active inhibition of spinal moto- 
neurons (7). We hypothesized that GABA and/or glycine 
are selectively released on serotonergic neurons during 
REM sleep. We tested this hypothesis by developing 
techniques for the measurement of GABA and glycine 
release in the DR across sleep/wake states with in vivo 
microdialysis and high-performance liquid chromatog- 
raphy (HPLC). 

METHODS 

Adult mongrel cats served as subjects. Animals were 
anesthetized with pentobarbitol sodium (35 mg/kg ip). Screw 
electrodes were placed in the posterior orbit and sensorimotor 
cortex for the recording of eye movements and electroencepha- 
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logram. Flexible stainless steel wires were inserted into the 
neck musculature for the recording of electromyographic 
activity. Stainless steel guide cannulas (21 gauge thin wall) 
were implanted at a 36” angle to vertical, to a position 1 mm 
dorsal to the DR. Guide cannulas and electrodes were secured 
to the skull with dental cement. 

Dialysis collection. At least 2 wk after surgery, a concentric- 
style microdialysis probe with a 2-mm semipermeable mem- 
brane 270 pm in diameter was inserted such that the tip 
extended 3 mm beyond the tip of the guide. The probe was 
perfused at a rate of 2 pl/min with artificial cerebrospinal 
fluid (aCSF) of the following composition (in mM): 145 Na+, 
2.7 K+, 1.0 Mg2+, 1.2 Ca2+, 152 Cl-, and 2 NasHPOb, pH 7.2. 
Sample collection was timed precisely by the use of a fraction 
collector (Eicom), incorporating a lo-min delay for the perfus- 
ate to travel from the tip of the probe to the outlet of the 
tubing. At least 17 h elapsed between probe insertion and the 
start of sample collection to permit stabilization of the 
surrounding tissue. Microdialysis samples were collected 
from immediately adjacent 5- to lo-min periods of SWS, REM 
sleep, and wake. Thus comparisons of amino-acid neurotrans- 
mitter content as a function of sleep/wake state were made 
between samples collected over a total period of ~30 min. 
This design minimizes potential confounds created by compar- 
ing transmitter release in samples from sleep/wake states 
collected at different time points subsequent to insertion of 
the microdialysis probe. Potential confounds caused by circa- 
dian rhythmicity of neurotransmitter release are also mini- 
mized by this procedure. 

HPLC analysis. Samples were analyzed for GABA content 
as well as glutamate and glycine content by HPLC coupled 
with electrochemical detection after precolumn derivitization 
with o-pthaldialdehyde. 

HPLC data analysis. Data from 19 sleep/wake cycles in 
four cats were analyzed by one-way analysis of variance 
(ANOVA) using the Newman-Keuls test for post hoc compari- 
sons. Each of the 19 sleep/wake cycles was represented by 
values for SWS, REM sleep, and wake for each of the amino 
acids measured. Samples from two, four, five, and eight 

sleep/wake cycles were collected from each of the four ani- 
mals, respectively. 

Microinjection and microperfusion. Microinjections of the 
GABAA receptor agonist muscimol (0.25 mg in 0.5 ~1 aCSF) 
were made over a period of 2 min in four DR sites in three cats 
at 9 AM. Vehicle control (0.5 ,~l aCSF) microinjections were 
also made in each case at the same time of day. The order of 
control and drug injections was randomized. Subsequent to 
microinjections, polysomnographic recordings were made for 
a period of 6 h. Microperfusions of the GABAA receptor 
antagonist picrotoxin (100 ,uM in aCSF at 2 mUmin) via 
microdialysis probes were made in three DR sites in three 
cats beginning at 10 AM. In each case, the microdialysis probe 
used for perfusion had been inserted 17 h before testing to 
allow for stabilization of the surrounding tissue. Microperfu- 
sions of the same areas with aCSF at the same time of day 
served as control. Microperfusions and polysomnographic 
recordings were made simultaneously for 4 h. 

Microinjection lmicroperfusion data analysis. Amount of 
time spent in SWS, REM sleep, and wake after drug or control 
microinjections/microperfusions was determined using stan- 
dard criteria for the analysis of cat polysomnographs (41). 
Data from microinjection and microperfusion studies were 
analyzed by one-way ANOVA and Newman-Keuls post hoc 
t-tests. 

Histology. Brain stem coronal slices (50 pm width) from 
each animal were stained with neutral red. Microdialysis, 
microperfusion, and microinjection sites were identified. In 
two animals, alternate slices were immunohistochemically 
stained for serotonin by the following method: 1) l-h incuba- 
tion in blocking buffer of 0.1% Triton X-100, 0.1% bovine 
serum albumin, and 2% normal goat serum in 0.1 M phos- 
phate-buffered saline; 2) 48-h incubation in l:lOO,OOO rabbit 
5HT antibody at 4°C (Incstar); 3) 2-h incubation in 1:500 
biotinylated goat anti-rabbit immunoglobulin G; 4) 2-h incu- 
bation in 1:lOO avidin-biotin-peroxidase complex with visual- 
ization by Vector 3,3’-diaminobenzidine kit. 

Fig. 1. A: histologically identified microdialysis 
probe and microinjection placements from brain 
stem coronal slices stained with neutral red. 
Black rectangles, placement of microdialysis 
membranes used in microdialysis collection. Open 
rectangles, placement of microdialysis mem- 
branes used in microperfusion experiments. +, 
Placement of muscimol microinjections. IC, infe- 
rior colliculus; CP, cerebral peduncle; LDT, lat- 
erodorsal tegmental nucleus; BC, brachium con- 
junctivum; PAG, periaqueductal gray; MLF, medial 
longitudinal fasciculus; BP, brachium pontis; 
FTC, central tegmental field; Pl, APO, anterior- 
posterior stereotaxic planes. B: photomicrograph 
of a microinjection site (dark lesioned area) on 
midline of the ventral PAG. C: photomicrograph 
of area outlined in B, demonstrating placement 
of microinjection within a population of neurons 
immunopositive for 5hydroxytryptamine. 
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Table 1. GABA, glutamate, and glycine concentration 
as a function of sleep I wake state 

GABA Glutamate Glycine 

Wake 0.042 5 0.005 35.84 + 2.55 32.30 2 4.29 
sws 0.049 5 0.007 36.42 2 4.57 34.05 t 4.80 
REM 0.072 t 0.003* 33.98 5 2.03 33.89 5 4.11 

Mean y-aminobutyric acid (GABA), glutamate, and glycine concen- 
tration (in pmol/pl) t SE for slow-wave sleep (SWS), rapid eye move- 
ment (REM) sleep, and wake samples. Each mean is based on 19 
samples. *P < 0.001, GABA concentration in REM sleep samples is 
significantly greater than GABA concentration in SWS and wake 
samples (analysis of variance with Newman-Keuls post hoc t-tests, 
degrees of freedom = 2,54). 

RESULTS 

Figure 1 indicates the locations of microdialysis, 
microinjection, and microperfusion sites. We found that 
the extracellular concentration of GABA in the DR rose 
selectively during REM sleep compared with both 
waking and SWS (ANOVA, degrees of freedom 2,51, 
P < 0.001). GABA levels were similar during wake and 
SWS sleep. Overall, GABA concentration in REM sleep 
samples was found to be 47 and 71% greater than in 
SWS and wake samples, respectively. No significant 
differences in release of glutamate or glycine as a 
function of state were found. Table 1 lists the concentra- 
tions of the three compounds as a function of sleep/ 
wake state. Figure 2 depicts GABA content in microdi- 
alysis samples collected from an individual DR site over 
the course of several sleep/wake cycles. Mean values for 
GABA concentration as a function of sleep/wake state 
were also calculated for each animal/microdialysis site. 
The means for each state for each animal were then 
subjected to an additional ANOVA to ensure that 
results regarding state-dependent amino acid concen- 
tration were not confounded by overrepresentation of 
data from a single microdialysis site or animal. Only 
results significant under both statistical tests are re- 
ported; both statistical procedures yielded the same 
results for every comparison. 

Microinjection of the GABA* receptor agonist musci- 
mol into the DR during waking produced a 67% in- 
crease in REM sleep time over vehicle control values 

& 
0.07 
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&I o . i3 0.05 

2 0.04 

$ 0.03 

; 0.02 

-g 0.01 
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Fig. 2. y-Aminobutyric acid (GABA) content in microdialysis samples 
collected in an individual dorsal raphe (DR) site over the course of 
several sleep/wake cycles. Note consistent increase in GABA release 
in rapid eye movement (REM) sleep. SWS, slow-wave sleep; AW, 
active wake; QW, quiet wake. 
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Fig. 3. REM sleep time as a percentage of control (vehicle microinjec- 
tion) values after microinjection of GABAA receptor agonist muscimol 
in the DR. Muscimol increased REM sleep time for a period of 2 h 
after injection. *P < 0.03. Open bars, SWS; solid bars, REM sleep; 
hatched bars, wake; 71 = 4. Error bars indicate SE. 

over a 2-h period (t-test, n = 4, P c 0.03) (Fig. 3). 
Increases in REM sleep time were offset by decreases in 
SWS and wake time that were not statistically signifi- 
cant. REM sleep amounts returned to control levels 
during hours 3-6 of the recording period. 

Microperfusion of the DR area with the GABAA 
receptor Cl- channel blocker picrotoxin (0.1 mM) via a 
microdialysis probe completely blocked the production 
of REM sleep over a 4-h period in two animals and 
decreased REM sleep time by 83% in a third (t-test, n = 
3, P < 0.05) (Fig. 4). In each case, the animals were able 
to initiate and maintain normal periods of SWS and 
wake. No significant differences in SWS or wake 
amounts were observed. 

DISCUSSION 

The finding of increased GABA in the DR during 
REM sleep is consistent with the hypothesis that GABA 
mediates active inhibition of DR serotonergic neurons 
during REM sleep. We also examined the efficacy and 
necessity of GABAergic input to the DR for REM sleep 
control. The large reduction in REM sleep amounts 
during picrotoxin perfusion in the DR indicates that 
the inhibition of DR serotonergic neurons by GABAA 
receptor activation is required for the production of 
REM sleen. Increases in REM sleen time after the 
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Fig. 4. Time (as a percentage of vehicle control) spent in SWS, REM 
sleep, and wake during perfusion of the DR with 100 pm picrotoxin. 
Picrotoxin significantly decreased REM sleep time. *P < 0.05. Open 
bars, aCSF; black bars, picrotoxin; IL = 3. Error bars indicate SE. 
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microinjection of the GABA* receptor agonist muscimol 
are consistent with our hypothesis that the inhibition 
of DR serotonergic cells by a GABAergic mechanism is 
permissive to and facilitates REM sleep production. 

Our microdialysis data suggest that GABAergic neu- 
rons, within or projecting to the DR, are selectively 
active during REM sleep. The location of neurons 
mediating the increased GABA release in the DR 
during REM sleep remains undetermined. Both intrin- 
sic and extrinsic sources of GABA innervation in the 
DR nucleus are possible origins of state-dependent 
GABA release. Fos immunolabeling indicates that small, 
nonserotonergic, possibly GABAergic, neurons of the 
DR are activated after the induction of a REM sleep- 
like state with microinjection of carbachol in the PRF 
(34,45). Aghajanian et al. (2) identified a population of 
nonserotonergic cells in the dorsal raphe that exhibited 
changes in firing opposite that of serotonergic cells in 
response to peripheral nerve stimulation. However, 
unit recording studies of the DR have not revealed 
units whose activity across the sleep/wake cycle paral- 
lel the changes we observed in GABA release. Thus 
GABA release selective to REM sleep could arise from 
small DR neurons not easily recorded with conven- 
tional extracellular recording techniques or from neu- 
rons external to the DR. There are GABAergic projec- 
tions to the DR from the preoptic and posterior 
hypothalamus, the periaqueductal gray, the midbrain 
and PRF, the peribrachial region, and the prepositus 
hypoglossal nucleus (9,12). It is likely that the source of 
state-dependent GABA release in the DR is caudal to 
the midbrain because DR units have been demon- 
strated to retain their REM-off pattern of firing in 
decerebrate cats (14). 

Neurons discharging selectively during REM sleep 
have been identified in the dorsolateral PRF (35). A 
population of GABAergic cells has been identified in 
this same region (17). The dorsolateral PRF sends 
projections to the DR, some of which are GABAergic (4, 
27). Together with the GABA release data presented 
herein, these findings suggest that some PRF REM-on 
neurons may be GABAergic. 

REM sleep behavior disorder in humans is character- 
ized by fragmented REM sleep as well as a disruption of 
muscle atonia within REM sleep (24). It resembles a 
syndrome seen after lesions of the dorsolateral pons in 
the cat (13, 18). In contrast to normal REM sleep, 
serotonergic neurons are not completely silent during 
REM sleep in the REM sleep without atonia syndrome 
(40). REM sleep behavior disorder is successfully treated 
with clonazepam, a benzodiazepine that potentiates 
GABAA receptors and has been shown to decrease the 
use of serotonin in the mouse brain (30). This suggests 
that a disruption of the output of GABAergic PRF 
neurons projecting to the raphe nuclei could underlie 
this disorder of REM sleep. 

Microiontophoretic application of the GABAA recep- 
tor antagonist bicuculline (Bit) reduces the decrease in 
DR unit discharge in SWS but not in REM sleep (21). 
We found no significant increase in GABA release in 
SWS. However, a small increase in the release of 

GABA, possibly beyond the resolution of the microdialy- 
sis technique, might be sufficient to reduce DR unit 
discharge in SWS. This interpretation is consistent 
with the report by Lydic et al. (23) indicating greatly 
decreased response of DR cells to excitatory input in 
REM sleep compared with SWS, despite a relatively 
small decrease in discharge rate from SWS to REM 
sleep. Greatly increased levels of GABA release would 
not be reflected in DR unit discharge because DR 
discharge in REM sleep falls to zero from the already 
minimal SWS rates. Our microdialysis and microperfu- 
sion data provide strong evidence that GABA mediates 
the suppression of serotonergic unit discharge during 
REM sleep. Indeed, as suggested by Levine and Jacobs 
(21), the inability of iontophoresed Bit to reverse REM 
sleep cessation of DR unit discharge could be due to 
incomplete antagonism of DR GABAA receptors as a 
result of increased GABA release. The results of the 
present study are compatible with their hypothesis. 
This interpretation is also consistent with the blockade 
of REM sleep production that we observed with picro- 
toxin perfusion. The antagonism of GABAergic activity 
in the DR by picrotoxin would not be blocked by 
increased GABA concentration because picrotoxin acts 
at the GABAA receptor Cl- channel rather than compet- 
ing with GABA at the GABAA receptor binding site, as 
is the case for Bit (19). 

In summary, we have demonstrated that GABA 
release in the DR is increased during REM sleep. 
Alterations in the production of REM sleep after the 
microinjection of a GABAA receptor agonist and antago- 
nist into the DR are consistent with the hypothesis that 
inhibition of serotonergic DR neurons by a GABAergic 
mechanism is a key controlling event of REM sleep. 
Our findings suggest that a group of REM-on neurons 
responsible for initiating REM sleep is GABAergic. 
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