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ABSTRACT
Motivation: Theoretical considerations suggest that current
microarray screening algorithms may fail to detect many true
differences in gene expression (Type II analytic errors). We
assessed ‘false negative’ error rates in differential expres-
sion analyses by conventional linear statistical models (e.g.
t -test), microarray-adapted variants (e.g. SAM, Cyber-T), and
a novel strategy based on hold-out cross-validation. The latter
approach employs the machine-learning algorithm Patient
Rule Induction Method (PRIM) to infer minimum thresholds for
reliable change in gene expression from Boolean conjunctions
of fold-induction and raw fluorescence measurements.
Results: Monte Carlo analyses based on four empirical
data sets show that conventional statistical models and
their microarray-adapted variants overlook more than 50% of
genes showing significant up-regulation. Conjoint PRIM pre-
diction rules recover approximately twice as many differentially
expressed transcripts while maintaining strong control over
false-positive (Type I) errors. As a result, experimental rep-
lication rates increase and total analytic error rates decline.
RT-PCR studies confirm that gene inductions detected by
PRIM but overlooked by other methods represent true changes
in mRNA levels. PRIM-based conjoint inference rules thus rep-
resent an improved strategy for high-sensitivity screening of
DNA microarrays.
Availability: Freestanding JAVA application at http://
microarray.crump.ucla.edu/focus
Contact: coles@ucla.edu

INTRODUCTION
Early approaches to analyzing microarray expression data
focused on reducing large numbers of assayed transcripts into
a small number of groups showing distinct expression profiles
(Eisen et al., 1998; Tamayo et al., 1999; Alter et al., 2000).

∗To whom correspondence should be addressed at: 11-394 Factor
Building, David Geffen School of Medicine at UCLA, Los Angeles,
CA 90095-1678, USA.

However, these analyses produced unreliable results at the
level of individual genes because such ‘unsupervised learning
algorithms’ provide no mechanism for controlling analytic
errors (e.g. a p-value estimate of the ‘false positive’ errors).
In response to this problem, researchers began to employ
a more stringent hypothesis-testing approach aimed at con-
trolling Type I analytic errors, or false declarations of change.
Second generation analyses utilized conventional inferential
statistics (Kerr et al., 2000) or modifications of the univariate
general linear model (GLM) (Dudoit et al., 2000; Long et al.,
2001; Tusher et al., 2001) to control Type I error. However, the
increased stringency of these analyses and the poor sensitivity
of the GLM in the presence of high noise and limited replic-
ates (Miller, 1986) suggest that second generation screening
strategies may overlook many true differences in gene expres-
sion (committing Type II ‘false negative’ errors). Theoretical
power analyses indicate that GLM techniques will fail to
detect more than 70% of genes showing 2-fold up-regulation
in typical microarray data structures (e.g. gene-specific t-tests
analyzing five paired test versus control samples with Type I
error controlled at p < 0.05 and a coefficient of variation in
replicate change scores of ∼100%, as observed empirically
below) (Winer, 1971). In microarray screening, this problem
is aggravated by increasing stringency to control for thousands
of parallel hypothesis tests.

A high rate of Type II error undermines several basic
applications of microarray technology, including efforts to
map gene expression networks and identify phenotypically
influential genes. In network mapping, Type II errors con-
stitute a failure to recognize existing links, which leads to
underestimates of network connectivity and faulty conclu-
sions about system stability, redundancy, path lengths, and
block structure (Harary, 1969). In efforts to uncover influ-
ential genes, high Type II error rates increase the likelihood
that researchers will overlook key results even when they are
present in the data (e.g. in searching for a single viral receptor
by comparing gene expression in infectable versus uninfect-
able cell types, or seeking one causally significant gene among
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a large background of spurious correlates or consequences).
For such applications, it is scientifically crucial that screen-
ing algorithms minimize Type II errors without incurring any
substantial increase in false positives.

Here, we present a novel approach to microarray differ-
ential expression analysis that employs the machine learning
algorithm Patient Rule Induction Method (PRIM) (Friedman
and Fisher, 1999) to infer ‘rules’ about which profiles of
change in observed data are likely to recur in a subsequent
replication study. The basic form of these rules is derived from
analysis of visual processing algorithms used by experienced
microarray analysts to infer reliable change from graphical
data displays (as detailed in the Web Supplement, Visual
pattern analysis of differential expression). The key insights
are that human visual analysts, (1) attend to multiple measures
of change simultaneously (e.g. fold-change and raw change)
and, (2) focus on minimum bounds for change rather than
the expected (mean) values. The PRIM approach automates
analysts’ reliability induction processes using an explicitly
defined statistical criterion for replication likelihood. Monte
Carlo studies show that this approach maintains tight control
over Type I errors while substantially reducing the Type II
error rates incurred by other second-generation microarray
screening analyses.

SYSTEMS AND METHODS
Microarray data
We assessed analytic error rates in several differential
expression data sets including comparisons of HIV-infected
versus uninfected thymocytes (three replicate observations of
7070 transcripts surveyed by Affymetrix HuGene-FL high
density oligonucleotide arrays), normal versus cancerous
breast tissue [five replicate observations of 5584 genes sur-
veyed by spotted cDNA microarrays (Perou et al., 2000)],
immature versus mature T lymphocytes (three replicate
observations of 7070 transcripts, Affymetrix), and quies-
cent versus activated T lymphocytes (three replicate obser-
vations of 7070 transcripts, Affymetrix). Raw data are
available from http://microarray.crump.ucla.edu/focus (Affy-
metrix studies) and http://genome-www.stanford.edu/sutech
(cDNA arrays). Technical details of experiments and microar-
ray data collection are contained in the Web Supplement
(Experimental methods) and published papers (Perou et al.,
2000).

GLM analyses
Following most second-generation microarray analyses
(Dudoit et al., 2000; Kerr et al., 2000; Li and Wong, 2001;
Long et al., 2001; Tusher et al., 2001), we fit a standard
GLM statistical model to log-transformed expression values
to identify genes with a mean change in expression exceed-
ing a biologically significant threshold, �thresh (e.g. >2-fold

increase at p < 0.05). Denoting the assayed expression of
gene g under condition c in the rth experimental replicate as
xgcr (g = 1–G genes, c = 0 for control or 1 for experimental
conditions, and r = 1–R replicates), the model expresses
each observation as the sum of independent effects repres-
enting the mean expression intensity across all genes (µ),
gene-specific differences in basal expression (γg), general-
ized differences in expression intensity across experimental
conditions (βc), gene-specific effects of experimental condi-
tions (δgc), and a residual term capturing all other sources of
variation (εgcr ):

log xgcr = µ + γg + βc + δgc + εgcr . (1)

ε is modeled as a random normal variate with a mean of
0 and a standard deviation of σ . Gene is g identified as
differentially expressed if the difference �g = δg1 − δg0

exceeds �thresh (e.g. log 2-fold) at a specified level of sig-
nificance (e.g. p < 0.05). This model subsumes most
standard statistical analyses including the paired- and inde-
pendent sample t-tests and array-wide analysis of variance
(ANOVA). Variants differ mainly in their methods for estim-
ating σ and are further detailed in the Web Supplement (Data
analysis). As in previous studies (Kerr et al., 2000), GLM
models fit the data well, with R2 goodness-of-fit statistics
exceeding 0.85 for all data sets examined (e.g. Supplemental
Table 1).

Monte Carlo analysis of Type I and II errors
Theoretical power analyses make assumptions about the mag-
nitude of ‘true’ change (e.g. all �g = 0), but realized Type II
error rates depend upon the empirical distribution of true
changes (i.e. how many genes’ expression are actually altered
by the studied manipulation?). We estimated the true change
distribution in empirical microarray data by fitting the GLM
model of Equation (1). We then used the resulting parameter
estimates to generate 200 Monte Carlo data sets correspond-
ing to each empirical data set (Web Supplement, Monte Carlo
studies) (Bratley et al., 1983). The ‘true’ magnitude of change
in expression of gene g was specified by �g = δg1 − δg0, and
noisy ‘observations’ of xgcr were generated via Equation (1),
with εgcr drawn from a random normal distribution with
the empirical value of σ (or gene-specific values of σg in
heteroscedastic models; see Web Supplement, Data analysis).
Monte Carlo data were then analyzed by alternative screening
strategies, and declared results for each gene were compared
with its true status to assess rates of Type I error (significant
change indicated by analysis, but no true change at the level
of �g), Type II error (no significant change indicated by ana-
lysis, but a true change at the level of �g), and total analytic
error (Type I + Type II).

Consistent with theoretical power analyses, Monte Carlo
studies showed that conventional GLM analyses overlook
60–70% of true differences in gene expression (Table 1,
Columns 1 and 2, and Supplemental Tables 2–4). Higher
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Table 1. Monte Carlo assessment of analytic error for alternative microarray screening tools

Prototype data set Screening toola

Gene-specific t

95% CI
ANOVA
95% CI

PRIMMin PRIMMean

HIV infection
Type I error rateb (6745 genes <2-fold) 0.40% 0.80% 2.00% 2.20%
Type II error rateb (325 genes >2-fold) 75.0% 72.3% 55.8% 55.7%
Total error rateb 3.9% 4.1% 4.1% 4.0%
Yieldb 110 144 279 289
κb 0.359 0.365 0.452 0.440

Breast cancer
Type I error rate (5054 genes <2-fold) 0.10% 0.20% 0.90% 1.40%
Type II error rate (722 genes >2-fold) 84.6% 65.9% 50.9% 44.3%
Total error rate 8.3% 6.7% 5.8% 5.6%
Yield 87 205 326 389
κ 0.247 0.474 0.594 0.630

T cell development
Type I error rate (6335 genes <2-fold) 0.10% 0.40% 2.10% 2.30%
Type II error rate (735 genes >2-fold) 52.3% 49.9% 40.9% 40.4%
Total error rate 5.6% 5.6% 6.1% 6.3%
Yield 359 394 568 587
κ 0.615 0.625 0.633 0.629

Immunologic activation
Type I error rate (5971 genes <2-fold) 0.30% 0.60% 4.20% 4.30%
Type II error rate (1099 genes >2-fold) 57.3% 56.8% 26.4% 25.8%
Total error rate 9.1% 9.4% 7.6% 7.6%
Yield 486 514 1058 1072
κ 0.549 0.544 0.706 0.707

Average
Type I error rate 0.23% 0.50% 2.30% 2.55%
Type II error rate 67.3% 61.2% 43.5% 41.6%
Total error rate 6.7% 6.5% 5.9% 6.2%
Yield 261 314 558 585
κ 0.443 0.502 0.596 0.602

aScreening functions are detailed in the Web Supplement and all are tuned to detect an increase in expression of 2-fold or greater. Gene-specific t = 95% confidence interval
(CI) based on gene-specific t-test (p < 0.05); ANOVA = 95% CI derived from fully randomized ANOVA with error pooled across all transcripts (model: log expression
level = Gene + Condition + Gene ∗ Condition + error); PRIMMin = PRIM prediction rule estimating 80% likelihood of >2-fold increase in replicate observation from minimum
observed raw- and fold-changes; PRIMMean = PRIM prediction rule estimating 60% likelihood of >2-fold increase in replicate observation from mean observed raw- and geometric
mean fold-change.
bTable entries represent mean value over 200 Monte Carlo data sets corresponding to each prototype data set. Results are presented for the heteroscedastic Monte Carlo model
(sampling variability differing across transcripts). Comparable results emerged from homeoscedastic models (constant sampling variability). Type I error rate = percent of increases
declared >2-fold that actually show a true mean change <2-fold (‘false positive’). Type II error rate = percent of true >2-fold increases not detected by analysis (‘false negative’).
Total error rate = frequency of Type I or Type II error/total number of transcripts analyzed. Yield = number of transcripts identified as differentially expressed. κ = Cohen’s
chance-corrected measure of accuracy (0 = no better than expected by chance; 1 = perfect detection performance; 0.5 = 50% better than expected by chance).

Type II error rates emerged for microarray-adapted variants
of the GLM such as Significance Analysis of Microarrays
(Tusher et al., 2001) and Cyber-T (Long et al., 2001) (data
not shown). To verify that differences overlooked by GLM
analyses represented true biological changes, we conducted
reverse-transcriptase PCR (RT-PCR) to measure mRNA levels
for several transcripts showing �g > 2-fold (detailed in the
Web Supplement, Biological verification of Type II errors).
As shown in Table 2, results indicated consistent changes
in mRNA level despite failure of GLM analyses to indicate
statistically significant differences.

ALGORITHM AND IMPLEMENTATION

Replication inference via PRIM
Analyses of intuitive reliability inference by experienced
microarray users (Web Supplement, Visual pattern analysis
of differential expression) suggest that it may be possible
to identify replicable changes in gene expression from a
multivariate data representation including both absolute and
relative change—ratiogr = xgr1/xgr0 and differencegr =
xgr1 − xgr0. The resulting Boolean conjunction rules struc-
turally resemble the ‘prediction boxes’ produced by the
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Table 2. RT-PCR verification of transcripts recovered by PRIM but missed by all other analysesa

Accession Gene name Differential expression ratiob

Replicate Replicate Replicate Geometric
1 2 3 mean

X00695 Interleukin 2 (IL2)
Microarrayc 51.3 10.2 5.0 13.9
RT-PCRd 508.2 143.9 45.5 149.3

M20137 Interleukin 3 (IL3)
Microarray 250.2 4.7 10.6 23.1
RT-PCR >500-folde >500 >500 >500

U43672 Interleukin 18 receptor (IL18R1)
Microarray 18.4 628.5 10.3 49.2
RT-PCR 23.0 12.9 16.6 17.0

L40379 Thyroid receptor interactor protein 10
(TRIP10) Microarray 15.0 199.9 5.64 25.7

RT-PCR 1.7 2.2 4.3 2.5
X74987 Ribonuclease L inhibitor (RNASELI)

Microarray 1.4 1.4 1.3 1.3
RT-PCR 24.5 2.9 3.0 5.9

D16611 Corporoporphyrinogen oxidase (CPO)
Microarray 3.1 8.1 10.1 6.3
RT-PCR 2.0 4.0 1.6 2.4

aEach transcript failed to be detected by ANOVA, paired and two-sample t-tests, Significance Analysis of Microarrays, and Cyber-T (screening functions detailed in Web Supplement).
All screening tools were tuned to detect >2-fold up-regulation in mean expression levels for mature versus immature T lymphocytes (p < 0.05, experiment-wide error rate = 0.25
for Cyber-T, false discovery rates up to 25% for Significance Analysis of Microarrays). Each transcript was identified by PRIMMin and PRIMMean prediction rules tuned to identify
>60% probability of >2-fold upregulation.
bFold-increase: mature/immature T lymphocytes.
cMicroarray fold-determination based on ratio of Affymetrix Microarray Suite average difference values.
dRT-PCR fold-determination based on ratio of mRNA quantities after normalization to GAPDH mRNA levels.
eIL3 transcripts were undetectable in all immature T lymphocyte samples. All mature T lymphocyte values were greater than 5000 copies IL3 per 10 000 GAPDH copies.

machine-learning algorithm PRIM (Friedman and Fisher,
1999). Friedman and Fisher developed PRIM to identify
Boolean product prediction regions associated with excep-
tionally high values of a criterion variable (y). Predictions
take the form,

ŷn =
{

1 if xn ∈ {∩p=1–P (xnp ∈ [t−p , t+p ])},
0 otherwise,

(2)

with n indexing the N observations, ŷn denoting the rule’s
predicted value of yn, and xnp representing one of P meas-
ured predictors (xn representing the vector of all x values for
observation n). t−p and t+p denote lower and upper bounds on
a continuous subspace of the predictor dimension p, and the
Boolean conjunction of all P subspaces constitutes a hyper-
cube segregating observations according to realized values of
xn (is t−p < xnp < t+p for all P predictors?). PRIM iteratively
optimizes t−p and t+p to identify regions of x space associated
with high values of y. Fitting begins with a ‘prediction box’
b0 containing all observations within the current t bounds for
each of the P predictors. At step 1, PRIM removes some
fraction α (e.g. 5%) of the observations from the lower end of
predictor dimension 1 (i.e. shift t−1 from its current value of the
0th percentile up to theαth percentile ofx1). This creates a new

prediction box b1
1, and PRIM computes the mean y value for

observations whose xn vector falls within that box. This pro-
cess is repeated for the lower bound of all other x dimensions,
and for the upper bound of all x dimensions (i.e. depressing
t+p from its current value at the 100th percentile down to the
100 − αth percentile value of xp), until there are 2P candid-
ate boxes b1. Whichever candidate box produces the highest
mean y value is adopted as the actual b1, and the entire pro-
cess is repeated until (a) the number of observations within b
becomes small (<10 in our implementation), or (b) the mean
y for in-box observations cannot be further increased. This
iterated ‘peeling’ of the initial box is then followed by a series
of ‘pasting’ operations in which t−p and t+p are expanded out-
ward by α% of the in-box observations until the mean y drops
below some pre-specified threshold cthresh. The current box b
is taken as the final PRIM rule predicting y from observed x.

Treating reliability as a prediction problem (Snedecor and
Cochran, 1989), we asked PRIM to generate rules forecasting
a high probability of future change in gene g’s expression
(e.g. an 80% probability of >2-fold change) given exist-
ing observations of its absolute and relative change—the
ratiogr and differencegr employed by visual analysts. Fol-
lowing classic cross-validation, we hold out a randomly
chosen replicate as a criterion and ask PRIM to predict the
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incidence of change in that replicate from data on the remain-
ing replicates (e.g. hold out replicate z; set yg = 1 if
ratiogz > 2-fold and yg = 0 otherwise; let xg = the vec-
tor of all measured values of differencegr and ratiogr such
that r �= z; ask PRIM to identify the largest subspace of x
such that Pr{ratiogz > 2-fold|differenceg1, differenceg2, . . . ,
differencegz−1, differencegz+1, . . . , differencegR , ratiog1,
ratiog2, . . . , ratiogz−1, ratiogz+1, . . . , ratiogR} > 80%).
This approach is repeated for 10 random hold-out replicates
(z values sampled with replacement), and a final rule is
defined by the mean difference and ratio of the final box b
from each analysis. Visual pattern recognition algorithms
were found to be particularly sensitive to minimum change
across replicates (Web Supplement, Visual pattern analysis
of differential expression), so we also tested PRIM rules pre-
dicting change in the hold-out sample from the minimum
ratio and minimum difference observed in other samples
(PRIMMin: Pr{ratiogz >2| minj {ratiogj }j=1 to z−1 and z+1 to R ,
mink {differencegk}k=1 to z−1 and z+1 to R). An example of the
resulting PRIM rule might be, ‘there is an 80% probability
that expression of gene g will increase >2-fold in a future
replicate IF(gene g showed a minimum change >2.3-fold
AND a minimum change >756 fluorescence intensity units
in already observed replicates).’ A variant, PRIMMean, pre-
dicted change in the criterion sample from the Boolean
product of the mean difference and the minimum ratio.
(Taking the minimum ratio across replicates operates as a
Boolean product ensuring that all replicate values of ratiog

equal or exceed that value.) The Web Supplement includes
further details (PRIM models of perceptual mapping func-
tions) and a free-standing JAVA implementation is available
at http://microarray.crump.ucla.edu/focus.

Monte Carlo analyses show that conjoint PRIM rules
recover ∼2 times as many differentially expressed genes as
do conventional GLM analyses while maintaining Type I error
rates below the nominal p < 0.05 (Table 1 and Supplemental
Tables 2–4). In Monte Carlo analyses based on the breast
cancer data, for example, PRIMMean identified a mean of
389 up-regulated genes versus 87 recovered by t-tests and
205 by array-wide ANOVA. Similar increases in yield were
observed in Monte Carlo analyses corresponding to each data
set examined (Table 1, all differences p < 0.001). As a
result of reduced Type II error, PRIM also produced lower
total error rates (Type I + Type II) and increased predict-
ive accuracy (κ = 0.60 versus 0.44–0.50 for GLM analyses;
Table 1). PRIM-based indications of change also showed sig-
nificantly higher replication rates than did GLM analyses in
split-half reliability studies (Supplemental Tables 4 and 5).
For example, among 34 transcripts identified by t-test as
showing >2-fold up-regulation in the first three replicates
of the breast cancer data, only 13 reappeared in analysis
of the remaining replicates (38% replication). In contrast,
66 of 108 differences identified by PRIMMean were replic-
ated (61%). PRIM rules showed especially strong advantages

with limited replicates (<8 per condition) and consistently
outperformed GLM statistical models in total error rates for
magnitudes of change ranging between >1-fold and >100-
fold, for signal-to-noise ratios ranging between 1/10th and
5 times those empirically observed, and across experimental
settings involving differing numbers of up-regulated genes
(Table 1 and Supplemental Tables 2–4). PRIM rules even out-
performed the ANOVA models used to generate the Monte
Carlo data, underscoring the poor sensitivity of GLM ana-
lyses in typical microarray settings. RT-PCR studies verified
that gene expression differences recovered by PRIM but over-
looked by other methods represent true biological differences
in mRNA expression (Table 2).

DISCUSSION AND CONCLUSION
The present studies show that PRIM-based conjoint predic-
tion rules can substantially outperform conventional GLM
statistical analyses in the high-noise limited-replicate setting
of microarray differential expression screening. The GLM’s
difficulties stem from the fact that indications of change are
quite noisy even when individual measurements of expres-
sion level are reliable (Fig. 1A and B). GLM methods are
known to show poor sensitivity in detecting qualitatively
consistent changes if they show great quantitative variabil-
ity (e.g. 10-fold increase in one replicate and 100-fold in
another, Fig. 1B) (Miller, 1986). As shown in Figure 1C,
PRIM Boolean product rules are much more tolerant of quant-
itative inconsistency across replicates as long as the qualitative
characteristics of change remain constant. In addition, PRIM
rules mimic visual pattern recognition processes in using
absolute change in signal intensity to modify confidence
in predictions made on the basis of qualitatively consistent
fold changes (Fig. 2A). Univariate GLM models do not take
such information into account, and are thus prone to over-
predicting the replicability of small raw changes and under-
predicting the replicability of large ones (Fig. 2A). Another
advantage stems from PRIM’s ability to ‘learn from the
data’ where to set reliability thresholds while GLM analyses
rely upon statistical theories assuming a stable relationship
between average change and its standard deviation (Fig. 2C).
As a result, PRIM conjoint prediction rules routinely out-
perform GLM statistical analyses and microarray-adapted
variants (e.g. SAM and Cyber-T) in analytic yield (tran-
scripts recovered), total error rates (Type I + Type II), and
experimental replication rates. RT-PCR studies confirm that
differences detected by PRIM but overlooked by all other
methods represent true biological changes, and that other
methods’ failure to detect such differences represent bona fide
Type II errors.

These data join previous studies in documenting high
sampling variability in microarray-based measures of change
despite reliable measurement of individual observations
(Dudoit et al., 2000; Lee et al., 2000; Long et al., 2001;
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Fig. 1. Stability microarray measurements and its impact on screening. (A) Reliability plot for two replicate observations from the control
condition of the T cell development study. Each data point represents one of 7070 transcripts assayed by Affymetrix high density oligonucleotide
arrays, with values floored at 100 to reduce spurious variability (dashed diagonal = perfect reliability, realized reliability assessed by rank
correlation). Results are representative of all data sets examined (median replicate CV ranged from 6 to 8%). (B) Reliability of log10-
transformed differential expression ratios from the T cell development study (X = ratio from replicate 1, Y = ratio from replicate 2).
Transcripts on the dashed diagonal show quantitatively similar change across replicates. Points on the ‘+’ perpendiculars show substantial
change in one replicate and negligible change in another. Note that it is not uncommon for transcripts to show 3- to 10-fold up-regulation in one
experimental replicate and 3- to 10-fold down-regulation in another (points in the upper left and lower right quadrants). Comparable results
were observed in all data sets examined, with median CV of replicate change measurements ranging from 77 to 168%. (C) Capture regions for
alternative microarray screening tools are compared to empirically observed change ratios. Screens based on an average 2-fold change across
replicates capture large numbers of unreliable results (‘+’ pattern and upper left or lower right quadrants). A 95% GLM confidence interval
for mean change >2-fold (paired-t test on log-transformed expression values) stringently excludes genes showing qualitatively consistent
change of variable magnitude (e.g. 10-fold increase in one replicate and 30-fold increase in another). PRIM Boolean product rules capture
genes showing qualitatively consistent change of variable magnitude (upper right quadrant) while rejecting those that show qualitatively
inconsistent change (‘+’ pattern and points in the upper left and lower right quadrants). PRIM bounds estimate 60% probability of >2-fold
change in a future replicate.

Newton et al., 2001; Tusher et al., 2001). In each of the
data sets examined here, more than 50% of the genes sur-
veyed showed coefficients of variation in gene induction that
exceed 100% (standard deviation of replicate change scores
greater than their mean). Analyses beyond the scope of this
presentation show that much of this variability stems from
systematic differences across individuals in basal gene expres-
sion and response to experimental manipulations. Despite the
biological noise in gene-induction measurements, the present
studies reveal a low rate of Type I error for both gene-specific

and array-wide GLM analyses (Table 1 and Supplemental
Tables 2–4). Standard calculations suggest that parallel 95%
confidence intervals for a 7000 gene microarray should pro-
duce an average of 350 spurious results at a p < 0.05.
However, such calculations assume that no genes show any
true change in expression. In empirical data, the magnitude of
true change varies and standard calculations may overestimate
actual Type I error rates. Given the change distributions of typ-
ical microarray data, the present Monte Carlo studies show
that the incidence of Type I error is actually closer to 1%
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Fig. 2. Conjoint inference rules based on raw- and fold-change. (A) Experienced microarray data analysts estimated the likelihood that a
subsequent replicate experiment would show >3-fold increase in expression based on profile-plot displays of two replicate observations
on each of 231 genes assayed in the T cell development study. Raw- and fold-change were parametrically varied, and analysts’ estimated
probability of >3-fold increase in a subsequent replicate were mapped according to the average difference and minimum change ratio
in observed replicates (contours = 5% increments in forecast probability). Analysts’ forecasts (left panel) show a similar topography to
actual probabilities of >3-fold change as measured in a held-out test sample (center panel). In contrast, t-tests (right panel) substantially
underestimate the probability of future >3-fold induction for large mean differences with high replicate variability (region 2, Type II errors)
while over-predicting replication of small mean differences (region 1, Type I errors). The rectangular region in the left panel compares a
PRIM-derived prediction rule (60% replication) with analysts’ estimates. (B) The structure of a PRIM conjoint inference rule is displayed
for the full T cell development data set. Each point displays the minimum ratio change (X-axis) and mean raw change (Y -axis) for one of
7070 transcripts measured in two experimental replicates. Points are colored red if they showed >2-fold increase in a third hold-out criterion
replicate and blue otherwise. PRIM rules identify regions in which the ratio of red to blue points exceeds a specified criterion (e.g. 60%).
Such prediction bounds capture greater numbers of differentially expressed transcripts (‘Yield’) than do GLM statistical methods such as the
paired t-test (C). Similar results emerged for independent-sample t-tests and array-wide ANOVA (Table 1, and Supplemental Tables 2–4).

at the nominal p < 0.05. It should be noted that we follow
the statistical literature in defining Type I error rates as the
number of falsely declared differences among genes show-
ing no true difference. Microarray analysts have sometimes
defined ‘false positive’ error rates as what statisticians term the
‘false discovery rate’—the number of genes showing no true
difference as a fraction of total declared differences. Using
the later definition, both GLM analyses and PRIM rules pro-
duce false discovery rates in the range of 5–15% [consistent
with previous reports (Lee et al., 2002)].

Despite low false positive error rates, an average 60% of
GLM-declared differences fail to replicate in parallel analyses
of data from the same experiment (Supplemental Tables 5

and 6). The explanation for this paradox lies in the high
incidence of Type II error. Because each GLM analysis fails
to identify 60–70% of true differences, the specific result set
that is recovered can show substantial sampling variability.
Replication failures thus stem from poor detection of true
differences, rather than from high rates of false positives. Low
Type I error rates should console microarray researchers who
have sought increasingly complex methods for reducing false
discovery (Tusher et al., 2001). However, high ‘false negative’
error rates suggest that alternative screening tools should be
considered when scientific objectives require the most com-
prehensive recovery of differentially expressed genes (e.g.
network mapping and gene hunting).
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PRIM control of false negative microarray errors

Conventional statistical analyses build a structural model of
the data as a basis for replication inference (e.g. Equation 1).
In contrast, the machine learning approach pursued here
seeks an empirical model of replication likelihood based
on prognostic features identified by human visual data ana-
lysts. This approach is not model-free, but descends from a
distinct lineage of set-theoretic models describing cognitive
processes involved in pattern recognition and similarity judg-
ments (Tversky, 1977; Gati and Tversky, 1982). Cognitive
heuristic models often outperform linear statistical models
in the analysis of noisy data with limited replicates—the
circumstances for which human pattern recognition is optim-
ized (Kahneman et al., 1987). In the conjoint data repres-
entation utilized here, raw differences serve as a ‘technical’
screen to discriminate meaningful changes from assay noise,
and relative change discriminates substantively significant
results from weak perturbations of highly expressed tran-
scripts. Arbitrary versions of such ‘difference and ratio’ rules
have been employed in some previous studies (Hakak et al.,
2001; Dadgostar et al., 2002) and a similar idea underlies
‘pre-filtering’ for cluster analysis. The PRIM approach estab-
lishes a clear statistical foundation for such screening rules
by identifying capture bounds that maintain a desired level of
reliability for a substantively specified magnitude of change
(e.g. 80% likelihood of >2-fold increase). The resulting
rules are easily interpreted by non-statisticians (Friedman and
Fisher, 1999) and adapt automatically to differing microar-
ray platforms (e.g. spotted cDNA arrays versus Affymetrix
GeneChips), alternative experimental designs (e.g. controlled
experiments in a single cell line versus observational studies of
heterogeneous patient samples), and variations in assay noise
(e.g. differences in reagent batches, hybridization conditions,
etc.). PRIM rules also admit the inclusion of any measure of
data reliability that may be of interest to researchers, such
as the standard deviation of change scores, t statistics or
F ratios, intra-condition coefficients of variation, and min-
imum or maximum expression values. Although the present
studies have focused on two-group comparisons, the PRIM
approach can also be extended to more complex experimental
designs through conjoint analysis of contrast values, regres-
sion slopes, or dispersion indices (Miller, 1986; McCullagh
and Nelder, 1991).

The present results tend to support empirical observa-
tions that microarray analyses overlook many differentially
expressed genes (Richmond et al., 1990; Newton et al., 2001;
Taniguchi et al., 2001; Lee et al., 2002; Yuen et al., 2002).
Our results suggest that such problems stem mainly from
sub-optimal analytic strategies rather than insufficiencies in
microarray measurement technology per se. As a result, it
may be possible to re-screen existing data sets using more
sensitive analytic algorithms if maximal recovery of dif-
ferentially expressed genes is a scientific objective. These
results also suggest that Type II errors will require more
attention in gene network mapping to avoid underestimating

network connectivity. The PRIM conjoint screening approach
described here provides an initial step, and further research is
needed to improve network ‘link-definition’ algorithms.
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