
Clinical studies indicate that stress, chronic 
depression, social support and other psycho-
logical factors might influence cancer onset 
and progression1–5. Recent mechanistic stud-
ies have identified biological signalling path-
ways that could contribute to such effects. 
Environmental and psycho-social processes 
initiate a cascade of information-processing 
pathways in the central nervous system 
(CNS) and periphery, which subsequently 
trigger fight-or-flight stress responses in the 
autonomic nervous system (ANS), or defeat/
withdrawal responses that are produced by 
the hypothalamic–pituitary–adrenal axis 
(HPA)6. FIGURE 1 shows the areas of the 
brain that are thought to be responsible for 
mediating stress responses and their effects 
on the adrenal glands and other target 
tissues. Cognitive and emotional feedback 
from cortical and limbic areas of the brain 
modulate the activity of hypothalamic and 
brain-stem structures that directly control 
HPA and ANS activity7. 

HPA responses are mediated by hypo-
thalamic production of corticotrophin-
releasing factor and arginine vasopressin, 
both of which activate the secretion of 
pituitary hormones such as adrenocortico-
tropic hormone (ACTH), enkephalins and 
endorphins. ACTH induces downstream 
release of glucocorticoids such as cortisol 
from the adrenal cortex. Glucocorticoids 
control growth, metabolism and immune 
function, and have a pivotal role in regulat-
ing basal function and stress reactivity 
across a wide variety of organ systems8. ANS 
responses to stress are mediated primarily 

by activation of the sympathetic nervous 
system (SNS) and subsequent release of 
catecholamines (principally noradrenaline 
and adrenaline) from sympathetic neurons 
and the adrenal medulla. Levels of catecho-
lamines are increased in individuals who 
experience acute or chronic stress, and are 
responsible for ANS effects on cardiac, 
respiratory, vascular and other organ sys-
tems8. Examples of stressors associated with 
alterations in the HPA and/or ANS include 
marital disruption, bereavement, depression, 
chronic sleep disruption, severe trauma and 
post-traumatic stress disorder9,10.

The activation of these pathways prepares 
an individual to survive a threat, and the 
physiological stress responses are therefore 
generally considered adaptive. However, 
under chronic stress most physiological 
systems are negatively affected by prolonged 
exposure to glucocorticoids and catecho-
lamines11. These changes are manifested 
by deleterious health consequences such 
as increased risk for cardiac disease, slower 
wound healing and increased risk from 
infections11. In the past decade, it has become 
increasingly clear that chronic alterations 
in neuroendocrine dynamics can also alter 
multiple physiological processes involved in 
tumour pathogenesis12–15. 

In this article, we review the clinical 
and experimental evidence regarding the 
effects of stress on tumour development, 
growth and progression. Special emphasis 
is placed on neuroendocrine influences 
on the tumour microenvironment, viral 
oncogenesis and the immune system (FIG. 2). 

Although the mechanisms and clinical 
relevance of these pathways are described 
separately, there are numerous interactions 
between them, reflecting the complexity of 
cancer pathogenesis. These pathways might 
provide additional clues about factors that 
regulate the course of disease in cancer 
patients and might offer new opportunities 
for therapeutic interventions.

Endocrine stress response and cancer
There is evidence linking stress, concomitant 
behavioural response patterns and result-
ant neurohormonal and neurotransmitter 
changes (all of which are referred to 
collectively within this paper as bio-behav-
ioural factors) to cancer development and 
progression. Epidemiological data show 
that psychological and social characteristics 
might be associated with differential cancer 
onset, progression and mortality. For exam-
ple, a twofold increase in breast cancer risk 
is evident after disruption of marriage owing 
to divorce, separation or death of a spouse5. 
Data from 3 eastern and midwestern states 
in the United States indicate that cancer risk 
increases after chronic depression that has 
lasted for at least 6 years16. A third study 
found that the combination of extreme 
stress and low social support was related to a 
ninefold increase in breast cancer incidence4. 
However, findings have been inconsistent. 
In general, stronger relationships have been 
observed between psycho-social factors and 
cancer progression than between psycho-
social factors and cancer incidence (see REF. 3 
for a discussion of the strengths and weak-
nesses of this literature). Data from patients 
with existing tumours show that cancer 
diagnosis and treatment cause substantial 
distress, and that those who tend toward 
depressive coping methods, such as hope-
lessness and helplessness, might experience 
accelerated disease progression2. By contrast, 
positive factors such as social support and 
optimism have predicted longer survival17,18. 
Additionally, there are important interac-
tions between behavioural stress factors and 
health behaviours — including smoking, 
insomnia, alcohol abuse and obesity — that 
might have a further impact on cancer risk19. 
Recent experimental studies have begun to 
elucidate the mechanisms underlying these 
observations. 

Animal models have provided com-
pelling evidence regarding the effects 
of behavioural stress on tumorigenesis 
and the biological mechanisms involved 
(TABLE 1). For example, immobilization 
stress in rats that were given a carcinogen, 
diethylnitrosamine, increased both the 
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incidence and rate of tumour growth20. 
Experimental stressors have also been 
found to increase the pathogenesis of vari-
ous virally mediated tumours in animal 
models (see below). Swim stress, surgical 
stress, social confrontation and hypother-
mia resulted in increased lung metastasis 
from injected breast cancer cells21–24. Swim 
stress, laparotomy (opening the abdo-
men) and social confrontation caused 
a 2- to 5-fold increase in the number of 
rat MADB106 breast tumour metastases 
present in the lung24,25 and a similar 
increase in the number of lung metastases 
counted 3 weeks later24–26. β-Adrenergic 

agonists (which simulate activation of 
the SNS) such as metaproterenol show 
dose-dependent increases in lung tumour 
metastases. Similarly, adrenaline injections 
promoted mammary tumour metastasis21–24. 
Perhaps most importantly, pre-treatment 
of animals with β-adrenergic antagonists 
(to block the activity of SNS activation) and 
indomethacin (to block inflammation) syn-
ergistically blocked the effects of behavioural 
stress on lung tumour metastasis27. 

Cellular and molecular events that 
promote cancer growth are also affected 
by stress. Swim stress in rodents results in 
induction of chromosomal aberrations and 
sister chromatid exchanges28 as well as lower 
activity of metaphase nucleolar organizer 
regions in bone marrow cells29. These find-
ings indicate that stress might compromise 
DNA repair mechanisms. Stress can also 
influence the expression of viral oncogenes 
and replication of tumorigenic viruses (see 
below). In an orthotopic murine model of 
ovarian carcinoma, immobilization stress 
increased tumour burden and enhanced 
angiogenesis and tumour production of 
vascular endothelial growth factor (VEGF)30, 
indicating that stress might promote tumour 
growth by facilitating development of a blood 
supply. VEGF is a pro-angiogenic molecule 
that stimulates endothelial cell migration, 
proliferation and proteolytic activity31. 
VEGF also interferes with the development 
of T cells and the functional maturation of 
dendritic cells32,33, indicating possible effects 
on anti-tumour immune responses (see 
below). In line with these findings, recent 
clinical studies have shown links between 
higher levels of social support and lower 
serum levels of VEGF in patients with ovarian 
cancer34. Furthermore, social support has also 
been linked to lower levels of interleukin-6 
(IL-6), another pro-angiogenic factor, both in 
peripheral blood and in ascites from patients 
with ovarian cancer35.

Understanding the mechanisms 
responsible for mediating the effects of 
stress on human tumour tissues is crucial 
for determining the full impact of stress 
on tumorigenesis and for devising effec-
tive interventions. Experimental evidence 
indicates that stress hormones have multiple 
effects on human tumour biology. Hormones 
that are associated with SNS activation might 
favour angiogenesis in human tumours. 
Noradrenaline has been shown to upregulate 
VEGF in adipose tissue and two ovarian 
cancer cell lines through the β-adrenergic 
receptor (βAR)–cyclic AMP (cAMP)–
protein kinase A (PKA) pathway36,37. This 
effect was abolished by a β-blocker, 

propranolol, and was mimicked by isopro-
terenol (a synthetic drug that mimics the 
effects of SNS stimulation), and was therefore 
thought to be mediated through βARs36,37. 
Noradrenaline also promotes various steps 
that are essential to tumour metastasis, 
including invasion and migration. In 
in vitro experimental models, noradrenaline 
increased colon cancer cell migration, an 
effect that was inhibited by β-blockers38. Both 
adrenaline and noradrenaline promoted 
in vitro invasion of ovarian cancer cells by 
increasing the expression levels of matrix 
metalloproteinase 2 (MMP2) and MMP9 12. 

βARs, which mediate most of the effects 
of catecholamines, have been identified on 
breast and ovarian cancer cells12,13. In both 
of these studies, β2AR was the dominant 
adrenergic receptor present. βARs are G-
protein-coupled receptors whose primary 
function is the transmission of information 
from the extracellular environment to the 
interior of the cell, leading to activation of 
adenylyl cyclase and accumulation of the 
second messenger cAMP39. In mammary 
tumours, activation of βARs has been linked 
to accelerated tumour growth13–15. The 
cAMP-responsive-element-binding (CREB) 
protein is an important transcription factor 
that is activated by multiple signal-transduc-
tion pathways in response to external stimuli, 
including stress hormones40,41. Several studies 
have shown a role for the CREB family of pro-
teins in tumour cell proliferation, migration, 
angiogenesis and inhibition of apoptosis40–42, 
as well as the expression of viral oncogenes 
(see below). An additional cAMP target, 
EPAC (also known as Rap guanine-nucle-
otide-exchange factor 3 (RAPGEF3)) is an 
exchange protein that is directly activated by 
cAMP. EPAC was recently shown to control 
a number of cellular processes that were 
previously attributed to PKA43. For example, 
βAR-mediated activation of cAMP promotes 
ovarian cancer cell adhesion through the 
EPAC–RAP1 pathway44. Collectively, these 
studies demonstrate the growing evidence 
that mediators of SNS activate cellular 
pathways within tumours that contribute 
to growth and progression. However, the 
clinical relevance in human studies of the 
bio-behavioural stress mechanisms described 
above remains to be demonstrated.

Glucocorticoids and other mediators
Glucocorticoids regulate a wide variety of 
cellular processes through glucocorticoid-
receptor-mediated activation or repres-
sion of target genes. Recent studies have 
demonstrated that whereas glucocorticoid 
hormones induce apoptosis in lymphocytes45, 

Figure 1 | Important components of the central 
and peripheral stress systems. Stressful 
experiences activate components of the limbic 
system, which includes the hypothalamus, the 
hippocampus, the amygdala, and other nearby 
areas. In response to neurosensory signals, the 
hypothalamus secretes corticotrophin-releasing 
factor (CRF) and arginine vasopressin (AVP), both 
of which activate the pituitary to produce 
hormones such as adrenocorticotropic hormone 
(ACTH). Circulating ACTH stimulates the 
production of glucocorticoids from the adrenal 
cortex. The sympathetic nervous system 
originates from the brainstem, and the pre-
ganglionic neurons terminate in the ganglia near 
the spinal column. From these ganglia, post-
ganglionic fibres run to the effector organs. The 
main neurotransmitter of the pre-ganglionic 
sympathetic fibres is acetylcholine and the typical 
neurotransmitter released by the post-ganglionic 
neurons is noradrenaline. The adrenal medulla 
contains chromaffin cells, which release mainly 
adrenaline.
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these hormones activate survival genes 
that protect cancer cells from the effects of 
chemotherapy in both in vitro and in vivo 
experimental models46,47. Glucocorticoids can 
also activate oncogenic viruses and inhibit 
anti-tumour and antiviral cellular immune 
responses (see below). Glucocorticoids such 
as cortisol might function in a synergistic 
fashion with catecholamines to facilitate 
cancer growth. For example, in lung carci-
noma cells cortisol increased βAR density 
and potentiated the isoproterenol-induced 
increase in cAMP accumulation48. So, it is 
plausible that stressful situations character-
ized by both increased catecholamine 
and cortisol concentrations (for example, 
uncontrollable stress) might have the greatest 
impact on cancer-related processes.

The expression levels of other hormones 
affected by stress include prolactin, which 
increases with stress49,50, and oxytocin and 
dopamine, which decrease with stress51. 
Prolactin can promote cell growth and 
survival in breast tumour and other tumour 
cells52. Oxytocin inhibits the growth of epi-
thelial cell (such as breast and endometrial) 
tumours and those of neuronal or bone ori-
gin, but the hormone has a growth-stimu-
lating effect in trophoblast and endothelium 
tumours53. For example, exogenous oxytocin 
has a dose-dependent mitogenic effect on 
human small-cell lung cancer cell lines, 
which is blocked by an oxytocin receptor 
antagonist54. Dopamine, which is known 
to inhibit the growth of several types of 
malignant tumours55, blocks VEGF-induced 
angiogenesis both in vitro and in vivo, 
primarily by inducing endocytosis of VEGF 
receptor 2 in endothelial cells56.

Effect of circadian deregulation on cancer 
Evidence indicates that circadian deregula-
tion influences the secretion of some 
stress-associated hormones, and this might 
explain the associations between stress 
and cancer57,58. Data from separate lines of 
investigation show that stress can disrupt cir-
cadian glucocorticoid rhythms57,59 and favour 
tumour initiation and progression57,58,60. 
Night-time shift work, a condition that is 
known to disrupt endocrine rhythms, is a 
risk factor for breast and colorectal cancer61. 
Mice with circadian disruption owing to Per1 
(period 1) or Per2 gene mutations are prone 
to tumour development and early death62,63. 
Tumour-bearing animals and cancer patients 
have disrupted endocrine, metabolic and 
immunological cycles, with greater disrup-
tion in cases where the tumour is advanced 
or fast-growing64. In murine studies, tumour 
progression and mortality are dramatically 

Figure 2 | Effects of stress-associated factors on the tumour microenvironment. 
The responses to stressors involve central nervous system (CNS) perceptions of threat and 
subsequent activation of the autonomic nervous system (ANS) and the hypothalamic–pituitary–
adrenal (HPA) axis. Catecholamines, glucocorticoids and other stress hormones are subsequently 
released from the adrenal gland, brain and sympathetic nerve terminals and can modulate the 
activity of multiple components of the tumour microenvironment. Effects include the promotion 
of tumour-cell growth, migration and invasive capacity, and stimulation of angiogenesis by 
inducing production of pro-angiogenic cytokines. Stress hormones can also activate oncogenic 
viruses and alter several aspects of immune function, including antibody production, cytokine 
production profiles and cell trafficking (see REF. 6 for a comprehensive review of immune effects). 
Collectively, these downstream effects create a permissive environment for tumour initiation, 
growth and progression. CRF, corticotrophin-releasing factor; IL-6, interleukin-6; MMP, matrix 
metalloproteinase; VEGF, vascular endothelial growth factor. 
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accelerated after elimination of circadian 
rhythms by manipulation of light–dark cycles 
(imposed ‘jet-lag’) and by the use of bilateral 
electrolytic lesions to destroy the suprachias-
matic nuclei (SCN), which eliminates circa-
dian rhythms60. Two clinical studies have also 
shown that the status of circadian cycles, such 
as cortisol or the 24-hour-rest–activity cycle, 
can predict long-term cancer survival58,65.

Stress-related disruption of circadian 
cycles might impair cancer-defence 
mechanisms through genetic and/or gluco-
corticoid and immune pathways. Animal 
studies show that behavioural factors such 
as imposed chronic jet-lag can alter Per1 
expression in the SCN60, and circadian 
genes, including Per1, regulate tumour 
suppression, cellular response to DNA 
damage, and apoptosis63. Glucocorticoid 
rhythms that are driven by the SCN62 are 
linked to both enumerative and functional 
immunity66. Sleep disruption can increase 
the release of cortisol as well as increase the 
expression of pro-inflammatory cytokines 
(for example, IL-6 and tumour-necrosis 
factor-α (TNFα)) in cancer patients67. 
Pro-inflammatory cytokines might promote 
tumorigenesis by inducing DNA damage 
or inhibiting DNA repair through the 
generation of reactive oxygen species. Pro-
inflammatory cytokines can also lead to the 
inactivation of tumour-suppressor genes, 
the promotion of autocrine or paracrine 
growth and survival of tumour cells, the 

stimulation of angiogenesis, or the subversion 
of the immune response (which leads to the 
activation of B cells rather than T cells in the 
tumour microenvironment)68. Conversely, 
agents that are capable of re-establishing 
circadian regulation (for example, melatonin) 
might have anti-tumour effects. Research on 
oestrogen-receptor-positive MCF-7 human 
breast cancer cells has shown that melatonin 
reversibly inhibits cell proliferation, increases 
p53 expression, modulates the cell cycle, and 
reduces metastatic capacity by increasing 
the expression of cell-surface adhesion pro-
teins69,70. Taken together, these data indicate a 
potentially important role of circadian regula-
tion in cancer defence and treatment62.

Influences on viral oncogenesis
The first experimental demonstration that 
bio-behavioural factors could promote 
cancer came from animal studies of tumour 
viruses71. Many studies have demonstrated 
the accelerated growth of virally induced 
tumours in stressed animals, as well as 
the more surprising protective effects 
of handling, fighting and crowding72,73. 
Neuroendocrine function has a central role 
in these processes because it can modulate 
viral replication, activate viral oncogenes, 
increase tumour metabolism and regulate 
the immune response74–76. The evidence for 
a viral contribution to human cancer has 
grown77 (BOX 1), and stress hormones have 

Table 1 | Effects of stress and stress-associated hormones on cancer 

Experimental 
manipulation

Animal Biological effect Tumour type Effect on tumour 
growth

References

Confrontation Rats NA Breast Increased metastasis of 
tumour cells to the lung

25

Restraint stress Rats Decreased numbers of T cells Mammary Increased  growth 
during stress

144

Forced swim Rats Decreased natural-killer-cell activity Leukaemia Increased  mortality 22

Abdominal 
surgery

Rats Decreased natural-killer-cell activity Mammary Increased metastasis of 
tumour cells to the lung

22

High versus low 
dopaminergic 
reactivity

Rats Decreased angiogenesis with high 
dopaminergic reactivity

Mammary Fewer lung metastasis 
with increased 
dopaminergic reactivity

145

Dopamine 
administration

Mice Decreased angiogenesis; decreased VEGF–
VEGFR2 binding and phosphorylation

Ovarian Decreased  ascites 
formation

56

Dopamine 
administration

Mice Decreased angiogenesis Gastric Decreased  growth 55

Social isolation Mice Decreased macrophage activity Ehrlich Increased  growth 146

Immobilization 
stress

Mice Increased angiogenesis Ovarian Increased  growth 30

Restraint stress Mice Decreased IL-12, IFNγ, CCL27 (also known as 
CTACK) and numbers of infiltrating T cells; 
increased numbers of suppressor cells

Skin and squamous cell 
carcinoma

Increased incidence, 
number, size and 
density

110

CTACK, cutaneous T-cell attracting chemokine; IL-12, interleukin-12; IFNγ, interferon-γ; NA, not available; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2. 

Box 1 | Physiological pathways, bio-behavioural processes and oncogenesis

• Environmental and social processes activate interpretive processes in the central nervous system 
(CNS) that can subsequently trigger fight-or-flight stress responses in the autonomic nervous 
system (ANS) or defeat/withdrawal responses through the activation of the hypothalamic–
pituitary–adrenal axis (HPA)141. 

• Individual differences in perception and evaluation of external events (coping) creates variability 
in individual ANS and HPA activity levels. 

• Over long periods of time, these neuroendocrine dynamics can alter various physiological 
processes involved in tumorigenesis, including oxidative metabolism, DNA repair, oncogene 
expression by viruses and somatic cells, and production of growth factors and other regulators of 
cell growth.

• Once a tumour is initiated, neuroendocrine factors can also regulate the activity of proteases, 
angiogenic factors, chemokines and adhesion molecules involved in invasion, metastasis and 
other aspects of tumour progression. 

• CNS processes can also shape behavioural processes that govern cancer risk (for example, 
smoking, transmission of oncogenic viruses or exposure to genotoxic compounds).
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been found to influence the activity of vari-
ous human tumour viruses (BOX 2; TABLE 2).

Epstein–Barr virus (EBV) is reactivated 
in healthy people who experience pro-
longed psychological stress78,79. In these 
studies HPA activity increased in parallel 
with reactivation of EBV79,80, and gluco-
corticoid hormones were subsequently 
found to increase EBV gene expression 
in vitro80,81. High-risk human papilloma 
viruses (HPVs), which contribute to cervi-
cal and rectal carcinomas, also respond to 
glucocorticoids by activating gene expres-
sion82–84, interacting with cellular proto-
oncogenes such as HRAS85, and evading 
cellular immune responses by downregu-
lating the expression of tumour MHC-I 
(major histocompatibility complex class I) 
molecules86. Clinical studies have identi-
fied stressful life events as a risk factor for 
increased progression of cervical dysplasia 
in HPV-positive women87,88. Furthermore, 
glucocorticoid antagonists can inhibit HPV 
activity in vitro89–91, providing a molecular 
rationale for clinical interventions that 
target HPA activity. Although hepatitis B 
and C viruses come from different viral 
lineages, glucocorticoids increase gene 
expression in and replication of both 
viruses90,92–94. These dynamics are so pro-
nounced that glucocorticoids are employed 
clinically to activate hepatitis B and C 
viruses for eradication by replication-
dependent antiviral drugs93,95. 

Cancer-related viruses are also sensitive 
to catecholamines and the PKA signal-
ling pathway. Molecular mechanisms are 
especially well defined for AIDS-associ-
ated malignancies. Catecholamines can 
accelerate human immunodeficiency 
virus 1 (HIV1) replication by increasing 
cellular susceptibility to infection96,97, 
activating viral gene transcription96 and 
suppressing antiviral cytokines98. People 
with heightened ANS activity show an 
increased viral load in the plasma and 
an impaired response to antiretroviral 
therapy96, placing them at increased risk 

for AIDS-associated B-cell lymphomas99. 
Catecholamines can also activate the 
Kaposi sarcoma-associated herpesvirus 
(KSHV) through PKA induction of the 
viral transcription factor Rta100. Human 
T-cell lymphotropic viruses 1 and 2 
(HTLV1 and HTLV2, respectively) are 
sensitive to PKA-mediated induction of 
the oncogenic Tax transcription factor101. 
Hormonal regulation of viral replica-
tion represents an important pathway 
by which bio-behavioural factors might 
influence malignant processes, but it also 
indicates novel therapeutic approaches 
such as β-adrenergic priming of viral 
genomes for clearance by replication-
dependent nucleoside analogue drugs. 

In addition to direct effects on viral 
gene expression, bio-behavioural factors 
can also indirectly affect tumour viruses 
by modulating host immune responses 
(see below). Antiviral vaccines will have an 
increasing role in the primary prevention 
of virally mediated cancers, and bio-
behavioural influences on vaccine-induced 
immune responses will become especially 
relevant102,103. Neuroendocrine influences 
on the immune response might also explain 
why oncogenic viruses so consistently 
acquire hormone-responsive replication 
dynamics. Viruses that coordinate their 

gene expression with periods of hormone-
induced immunosuppression should enjoy 
a significant survival advantage. Similar 
selective pressures might also shape the 
evolution of non-viral malignancies104 such 
that genomic alterations are selected based 
on their ability to evade immune clearance 
or to synergize with endocrine dynamics to 
optimize tumour growth and metastasis.

Influences on immune mechanisms
Chronic stress has been shown to suppress 
different facets of immune function2 such 
as antigen presentation, T-cell proliferation, 
and humoral and cell-mediated immunity, 
mainly through the release of catecholamine 
and/or glucocorticoid hormones105–107. 
Relevant neuroendocrine and immune sys-
tem interactions include direct synapse-like 
connections between sympathetic nerves 
and lymphocytes in lymphoid organs108, 
neural and endocrine modulation of lym-
phocyte trafficking109, and modulation of 
leukocyte function through glucocorticoid 
receptors and other receptors70. Tumour inci-
dence and progression based on modulation 
of the immune response by chronic stress has 
been demonstrated in many animal models 
(see above). Recent studies have shown that 
chronic stress experienced during exposure 
to non-blistering ultraviolet radiation 
significantly increases susceptibility to squa-
mous cell carcinoma by suppressing type 1 
cytokines and the infiltration of protective 
T cells. Regulatory or suppressor T-cell num-
bers within the tumours and in the circula-
tion were also increased110. Studies in mice 
of the immune response to transplanted 
syngeneic tumours showed that noradrena-
line111 and adrenaline112,113 directly inhibited 
the generation of anti-tumour cytotoxic 
T cells through β-adrenergic signalling 
mechanisms. Chronic stress has been shown 
to modulate lymphocyte apoptosis through 

Table 2 | Neuroendocrine influences on tumour viruses

Human tumour virus Malignancy Sensitivity*

Human papilloma viruses 16 and 33 Cervical and head/neck cancer HPA

Hepatitis B virus Hepatocellular carcinoma HPA

Hepatitis C virus Hepatocellular carcinoma HPA

Epstein–Barr virus Lymphoma, and nasopharygeal 
carcinoma

HPA

Human T-cell lymphotropic viruses 
1 and 2

Adult T-cell leukaemia/lymphoma ANS

Kaposi sarcoma-associated 
herpesvirus

Kaposi sarcoma, and primary 
effusion lymphoma

ANS

*Presumptive, based on in vitro studies. ANS, autonomic nervous system; HPA, hypothalamic–pituitary–adrenal 
axis. Vaccination is an important primary prevention strategy against viral tumours, and behavioural factors can 
influence the efficacy of this approach by modulating vaccine-induced immune responses102,103.

Box 2 | Viral oncology

• Viral infections contribute to approximately 15% of human cancers worldwide77.

• Pathogenic mechanisms include expression of viral oncogenes (for example, human T-cell 
lymphotropic virus Tax, and Epstein–Barr virus nuclear antigens and latent membrane protein 1), 
inhibition of host-cell tumour-suppressors (for example, human papillomavirus E6, which targets 
p53 and E7, which targets RB), and genomic damage stemming from immune-mediated cell 
turnover (for example, hepatitis B and C viruses)77,142,143. 

• All major human tumour viruses are sensitive to the intracellular signalling pathways activated by 
the hypothalamic–pituitary–adrenal axis and autonomic nervous system. These mediators can 
reactivate latent tumour viruses, stimulate oncogene expression and inhibit host-cell antiviral 
responses.
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an increase in FAS (also known as CD95 or 
APO1) expression. It has been hypothesized 
that such lymphocyte reduction might result 
in an increase in the incidence of oncogenic 
viral infections and DNA damage114.

Compromised natural killer (NK)-cell 
function has been shown in both animal 
and clinical studies of surgical stress22,115. 
High levels of psychological distress have 
been linked to reduced cellular immunity in 
patients with breast116 and ovarian cancer117. 
More specifically, distress measured by self-
report was correlated with low NK-cell cyto-
toxicity in tumour-infiltrating lymphocytes 
from human ovarian cancers117. Low 
peripheral NK-cell counts are prognostic for 
early breast cancer mortality, and reduced 
NK-cell cytotoxicity is predictive of a poor 
clinical outcome in patients with breast 
carcinoma58. Positive psycho-social factors 
such as social support have been associated 
with increased levels of NK-cell cytotoxic-
ity in patients with breast118 and ovarian 
cancer117. The relationship of increased 
NK-cell cytotoxicity with social support was 
not limited to the periphery; it was also seen 

in tumour-infiltrating lymphocytes isolated 
from human ovarian cancers, reflecting pos-
sible psycho-social influences on the tumour 
microenvironment117. Patients with breast 
cancer who reported increased psychological 
growth through participation in a cognitive 
behavioural intervention programme dem-
onstrated increased levels of cellular immune 
function119. Preliminary studies have found 
that the expression of spirituality was related 
to increased numbers of circulating T cells 
in patients with breast cancer120, and that the 
use of humour as a coping mechanism was 
associated with increased NK-cell activity in 
cancer patients121.

Clinical opportunities and challenges
Our understanding of the biological and 
clinical significance of psycho-social and bio-
behavioural influences on cancer pathogen-
esis is expanding. As described in this review, 
factors such as chronic stress, depression and 
social support have been linked to tumour 
biology, viral oncogenesis and cell-mediated 
immunity (FIG. 3). Although the molecular 
pathways have not been completely deline-

ated, observations to date indicate a need for 
novel therapeutic paradigms that integrate a 
bio-behavioural perspective.

It is plausible that successful manage-
ment of factors such as stress and negative 
mood might have a salubrious effect on the 
neuroendocrine regulation of oncogenesis, 
tumour growth and metastasis, and cancer 
immunoediting processes. Psycho-social 
interventions such as relaxation and 
cognitive behavioural techniques that alter 
negative mood seem to modulate ANS and 
HPA hormonal activity122–124. Moreover, 
such interventions can potentially be used 
in conjunction with conventional therapies 
to maximize treatment efficacy125,126. Stress-
management interventions that dampen 
chronic-stress-related physiological changes 
might facilitate immune system ‘recovery’ 
and thereby increase immune surveillance 
during the active treatment of cancer119,124. 
Group-based psycho-social interventions 
that combine relaxation with cognitive 
behavioural techniques, such as cognitive 
behavioural stress management (CBSM), 
have been shown to increase indicators 

Figure 3 | Integrated model of bio-behavioural influences on cancer 
pathogenesis through neuroendocrine pathways. In this model, bio-
behavioural factors such as life stress, psychological processes and 
health behaviours (blue panel) influence tumour-related processes 
(green panel) through the neuroendocrine regulation of hormones, 
including adrenaline, noradrenaline and glucocorticoids (red panel). 
Central control of peripheral endocrine function also allows social, 
environmental and behavioural processes to interact with biological 
risk factors such as genetic background, carcinogens and viral infections 
to systemically modulate malignant potential (red panel). Direct 
pathways of influence include effects of catecholamines and 
glucocorticoids on tumour-cell expression of genes that control cell 
proliferation, invasion, angiogenesis, metastasis and immune evasion 

(green panel). Stress-responsive neuroendocrine mediators can also 
influence malignant potential indirectly through their effects on 
oncogenic viruses and the cellular immune system (red panel). These 
pleiotropic hormonal influences induce a mutually reinforcing system 
of cellular signals that collectively support the initiation and progression 
of malignant cell growth (green panel). Furthermore, neuroendocrine 
deregulation can influence the response to conventional therapies such 
as surgery, chemotherapy and immunotherapy (green panel). In addition 
to explaining bio-behavioural risk factors for cancer, this model 
suggests novel targets for pharmacological or behavioural intervention. 
CTL, cytotoxic T lymphocytes; IL, interleukin; MRD, minimal residual 
disease; NKC, natural killer cell; TGFβ, transforming growth factor-β; 
TNFα, tumour-necrosis factor-α; TSH, thyroid-stimulating hormone.
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of immune responses against potentially 
oncogenic viral infections, such as EBV127. 
Such alterations are paralleled by decreased 
expression levels of cortisol in the serum, a 
reduced depressive mood, increased social 
support and enhanced relaxation skills122. 

In HIV-infected individuals, who as a 
group are at risk for multiple opportunistic 
cancers, CBSM seems to accelerate recon-
stitution of naive T-lymphocytes, increase 
CD8+ cytotoxic T-cell numbers and decrease 
the viral load of HIV over time122,128. These 
changes are pre-dated by decreases in nega-
tive mood and decreases in urinary cortisol 
and noradrenaline output122,129. It is plausible 
that CBSM might also help decrease the 
replication and function of other oncogenic 
viruses such as HPV and improve immune 
defences against them. Psycho-social inter-
ventions in cancer patients have resulted in 
alterations in neuroendocrine regulation and 
immunological functions124,130,131 that are rel-
evant for monitoring neoplastic cell changes. 
For example, two recent randomized clinical 
trials have documented increases in lym-
phocyte proliferation in patients with breast 
cancer following psycho-social interven-
tions119,124, and post-intervention changes 
in NK-cell activity have also been shown 
in patients with malignant melanoma131. 
Collectively, this work indicates that stress 
management can modify neuroendocrine 
deregulation and immunological functions 
that potentially have implications for tumour 
progression. This might be particularly 
important among vulnerable populations 
such as older adults because ageing is 
associated with a suppression of the immune 
response. 

Clinical studies of psycho-social inter-
ventions with cancer survival as an outcome 
have been methodologically flawed or have 
failed to confirm a survival advantage in 
the treatment group1,126,132–134. Similar to 
most medical interventions for cancer, the 
effectiveness of psycho-social interventions 
is likely to vary with the type and stage of 
cancer, characteristics of the patient (for 
example, age, gender, education, co-morbid 
medical conditions, and health behaviours 
such as tobacco use, alcohol consumption 
and physical activity) and the type and 
delivery of the intervention. Nevertheless, 
epidemiological evidence correlating psy-
chological and social factors (for example, 
chronic depression, hopelessness, marital 
disruption and social support) with cancer 
incidence, progression and survival give cre-
dence to examining the biological signalling 
pathways and mechanisms that underlie 
these observations.

Pharmacological interventions can 
potentially be used to ameliorate stress-
associated influences on cancer develop-
ment and progression. As discussed above, 
β-blockers have been shown to block many 
of the deleterious effects of stress. In a large 
case–control study of patients with prostate 
cancer who were taking anti-hypertensive 
medication, only β-blockers were associated 
with a reduction of cancer risk135. A cohort 
study of cardiovascular patients showed that 
the use of β-blockers, relative to never-using, 
resulted in a 49% decrease in cancer risk, 
with a 6% decrease in risk for every year of 
use136. Large population-based case–control 
studies have not confirmed alterations in 
risk for invasive breast carcinoma with 
β-blocker use137,138. The use of antidepressant 
medications might be promising, owing to 
a concomitant suppression of an inflamma-
tory response that has been associated with 
certain types of cancer139. For example, lith-
ium inhibits prostaglandin E1, and tricyclic 
antidepressants antagonize thromboxanes140. 
Some monoamine oxidase inhibitors exert a 
more potent anti-prostaglandin effect than 
indomethacin140. Whether these agents can 
be used to reduce cancer risk through bio-
behavioural-related mechanisms remains 
to be determined, but these studies indicate 
that further inquiry is warranted. 

Conclusion
Despite significant progress in the past 
decade, further research is needed to define 
the mechanisms underlying the complex 
circuits involving the HPA and ANS axes 
and their effects on the processes involved 
in cancer development and progression. 
The body of data outlined above supports 
a model in which bio-behavioural factors 
influence multiple aspects of tumorigenesis 
through their impact on neuroendocrine 
function (FIG. 3). These effects include direct 
promotion of tumour growth by affecting 
steps in the metastatic cascade and viral 
oncogenesis. Furthermore, the interplay 
between behavioural processes and cellular 
immune factors also supports a favourable 
physiological environment for tumour 
establishment and growth. In the context of 
this ‘systems biology’ perspective, pharma-
cological and behavioural interventions that 
address neuroendocrine dysfunction could 
have a clinically significant role in avoiding 
these deleterious effects on tumour growth. 
Although stress per se does not cause cancer, 
the clinical and experimental data outlined 
above indicate that factors such as mood, 
coping mechanisms and social support can 
significantly influence the underlying 

cellular and molecular processes that facili-
tate malignant cell growth. As cancer treat-
ment evolves towards a more patient-specific 
approach, consideration of the influence 
of bio-behavioural factors provides a novel 
perspective for mechanistic studies and new 
therapeutic targets. 
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